

Allele-selective SNP editing utilizing AAV5delivered Life Edit[®] nuclease and guide RNA resulting in meaningful reduction of mutant HTT protein

> Kathryn Woodburn PhD, Logan Brown PhD, Nancy Cheng PhD, Alexandra Crawley PhD, Helen Mao PhD, Jamie Moy PhD, Ariel Vitenzon PhD

18TH ANNUAL HUNTINGTON'S DISEASE THERAPEUTICS CONFERENCE DUBROVNIK, CROATIA | 25TH APRIL 2023

Evolutionarily Distant Nucleases With a Diversity of PAM Sequences

Collection of RGNs with diverse PAM sequences

Exclusive access to the genome editing systems identified in the continuously expanding AgBiome proprietary collection for use in human therapeutics Collection enables the ability to **find additional enzymatic activities** to build future editing systems (e.g., proprietary base editors, transposases, others)

Life Edit Gene Editing Technology & Allele-Specific Editing in HD

Life Edit's Collection of Proprietary RNA guided Nucleases Enable Targeting of Disease-Linked Genes

CRISPR System Components

life edit

an **elevate**bia company

Three components of a CRISPR system:

- Nuclease
- Guide RNA
- Protospacer Adjacent Motif (PAM)

Life Edit has a library of nucleases (Life Edit Genes or LEGs) with unique PAM recognition sequences, enabling us to target diverse genomic sequences

Life Edit Lead Nucleases					
Nuclease	Base Pairs	Amino Acids	MW kDa	PAM	
LEG-A	3213	1071	126	NNNNCC	
LEG-B	3450	1150	133	NNRYA	
LEG-C	3156	1052	124	NNGRR	
LEG-D	3390	1130	130	NNGG	
SpCas9	4104	1368	158	NGG	

Allele Selective Editing of Exon50 rs362331 in Patient Fibroblasts

Cell Lines

- Patient fibroblast line(GM09197) is heterozygous (C/T) for Exon50 rs362331
 - T-allele expresses mutHTT protein
 - C-allele expresses wtHTT protein
- Healthy patient fibroblast line GM08399 is homozygous for Exon50 rs362331
 - Both alleles carry 'C' & express wtHTT protein
- RNA nucleofection
- 96hrs timepoint
- Jess capillary electrophoresis protein quantification system
- EPR5526 antibody (recognizes mutHTT and wtHTT protein)

LEG-B-SGN2 targeting 'T' SNP does not affect wtHTT protein in fibroblast line derived from healthy donor that is homozygous (C/C) for rs362331
LEG-B-SGN2 targeting 'T' SNP does not affect wtHTT protein in patient-derived fibroblast line that is heterozygous (C/T) for rs362331 with CAG repeat expansion in-phase with the 'T' allele

1			Huntingtin Gene
Target Tissue		— Exc	on1 Exon 50 _//_ Exon 67 -
			SNP rs362331 'C' or 'T'
Vector	AAV5	SNP Allele- selective	The PAM site generated by HTT Exon50 rs362331 SNP allows selective targeting of HTT alleles with Life Edit nucleases based on
Route of Admin	Intrastriatal	Editing	the presence of 'C' (LEG-A) or 'T' (LEG-B) nucleotide
Genetic Target –	HTT Exon50 SNP 362331	Therapeutic Goal	AAV5-delivered Life Edit nuclease (LEG-A or LEG-B) and guide RNA (<i>SGN1</i> or SGN2) targeting Huntingtin's Exon50 rs362331 'C' or 'T' SNP, to be expressed in at least 50% of striatal neurons , resulting in >40% knockdown of mutant HTT protoin
Editing Aodality _	DSB → NHEJ		24070 KHOCKdown of Hutant HTT protein
luclease	LEG-A ('C') Secondary target	Mode of Action	Allele-specific DSBs activate NHEJ repair pathway, form INDELs that cause frameshift leading to mRNA containing premature-stop codons which are degraded by non-sense mediated decay

company

Intrastriatal Administration Qualification

Striatal Injection Sites

AAV5-eGFP DARPP32 (MSNs)

2µl/site

Transgene Promoter Expression and Biodistribution; Transgene Expression Optimization

Identification of promoters with expressed in at least 50% of striatal neurons

||||| life edit an **elevate**bj**a** company

LEG-A or LEG-B/sgRNA

- Multiple sgRNAs can be used
- Must purify two AAVs for co-infection

SpCas9 vector + sgRNA vector

Small Nucleases Enable Single AAV Delivery

Allele Selective Editing of HTT SNP rs362331 AAV5-LEG-A Targeting 'C' allele

Target

AAV5-delivered Life Edit nuclease (LEG-A) and guide RNA (SGN1) targeting Huntingtin's Exon50 rs362331 'C' SNP, to be expressed in at least 50% of striatal neurons, resulting in at least 40% knockdown of mutant HTT protein

YAC128 Murine Model

Allele Selective Editing of rs362331'C' SNP with LEG-A (AAV5-LEG-A-SGN1)

- Humanized transgenic murine models contain two mouse alleles + full-length human Huntingtin gene including 128 CAG repeat and Exon50 rs362331 'C' SNP
- Both human mutHTT and mouse wtHTT protein are expressed (size-based differentiation)
- Licensed from University of British Columbia, Canada
- To deliver in vivo packaged in AAV5 (AAV5-LEG-A-SGN1)

Evaluation of AAV5-LEG-A treatment at different doses and study duration

Allele Selective Editing of rs362331'C' SNP with LEG-A

Treatment	Cassette Size (bp)	Dose (vg/animal)	In-Life Duration
Naive	—	0	4 & 12 weeks
AAV5-CON1-LEG-A-SGN1	4518	1.3E10	4 & 12 weeks
AAV5-CON1-LEG-A-SGN1	4518	6.4E10	4 & 12 weeks
AAV5-CON1-LEG-A-SGN1	4518	3.6E11	4 & 12 weeks

8ul injection vol. 4ul/hemisphere 2ul/injection site

11

Intrastriatal AAV5-LEG-A results in high vector disposition in striatum and cortex

-Clear dose-dependence

|'|,|

life edit

an **elevate**bia company

- Each point represents individual mice with mean ± SE shown.
- Naïve cohorts are not depicted as are below LLOQ

Dose-dependent reduction in striatal mutHTT protein and dose-dependent increase in INDELs at target HTT Exon50 site

- INDELs detected at target HTT Exon50 site; low rates may be due to other potential editing outcomes not detectable by short amplicon-based NGS
- Each point represents individual mice with mean ± SE shown. **P<0.01, ****P<0.0001.

'', **'**

life edit

an **elevate**bia company 13

Editing of rs362331 'C' SNP with LEG-A Achieved

- AAV5-LEG-A delivered intrastriatally resulted in high dose-dependent vector disposition in YAC128 striatum and cortex
- Dose-dependent reduction in striatal mutHTT protein
 - Clinically relevant reduction in mutHTT protein observed in striatum
- Dose-dependent increase in INDELs at target HTT Exon50 site
 - Rates may be due to other potential editing outcomes not detectable by short amplicon-based NGS
 - YAC128 line contains 3 tandem copies of HTT gene

life edi

an **elevate**bia company

- Some potential editing outcomes not detected with this method

 Based on HD patient population stratification by haplotype, now focused on 'T' allele

Nelson et al, 2019, Nature Medicine

Allele Selective Editing of HTT SNP rs362331 AAV5-LEG-B Targeting 'T' allele

Target

AAV5-delivered Life Edit nuclease (LEG-B) and guide RNA (SGN2) targeting Huntingtin's Exon50 rs362331 'T' SNP, to be **expressed in at least 50% of striatal neurons**, resulting **in at least 40% knockdown of mutant** HTT protein

BACHD Murine Model

Allele Selective Editing of rs362331'T' SNP with LEG-B

- Humanized transgenic murine models contain two mouse alleles + full-length human Huntingtin gene including 97 CAG/CAA repeat and Exon50 rs362331 'T' SNP
- Both human mutHTT and mouse wtHTT protein are expressed (size-based differentiation)
- Licensed from UCLA, USA

|'|,|

life edit

an **elevate**bia company • To deliver in vivo packaged in AAV5 (AAV5-LEG-B-SGN2)

Evaluate AAV5-LEG-B treatment in BACHD mice with CON1 and TSP1 promoters

Allele Selective Editing of rs362331'T' SNP with LEG-B

Treatment	Cassette Size (bp)	Dose (vg/animal)	In-Life Duration
Naive	—		4- & 12-weeks
AAV5-CON1-LEG-B-SGN2	4736	1.72E11	4- & 12-weeks
AAV5-TSP1-LEG-B-SGN2	5013	2.84E11	4- & 6-weeks

8ul injection vol. 4ul/hemisphere 2ul/injection site

Dorsal View

17

Intrastriatal AAV5-LEG-B results in high vector disposition, nuclease expression & editing at target HTT Exon50 site

• Naïve vector genome cohorts are not depicted as are below LLOQ

Intrastriatal AAV5-TSP1-LEG-B results in high vector disposition, nuclease expression & editing at target HTT Exon50 site

- Each point represents individual mice with mean ± SE shown. *P<0.05, ****P<0.0001
- Vehicle vector genome cohorts are not depicted as are below LLOQ

AAV5-LEG-B cassette optimization: codon, promoters & polyA evaluation

Allele Selective Editing of rs362331'T' SNP with LEG-B

|||||

life edit

an **elevate**bia company

Treatment	Dose (vg/animal)	In-Life Duration
Naive	1.26E11	6-weeks
AAV5-CON1-LEG-Bmco-pA1	1.26E11	6-weeks
AAV5-TSP1-LEG-Bmco-pA1	7.32E10	6-weeks
AAV5-CON2-LEG-Bmco-pA1	7.28E10	6-weeks
AAV5-CON3-LEG-Bmco-pA1	1.48E11	6-weeks
AAV5-CON2-LEG-Bmco-pA2	1.04E11	6-weeks
AAV5-CON3-LEG-Bmco-pA2	1.29E11	6-weeks

20

Intrastriatal AAV5-LEG-B results in high vector disposition & LEG-B Expression in striatum and cortex

- Each point represents individual mice with mean ± SE shown.
- Naïve vector genome cohorts are not depicted as are below LLOQ

Reduction in striatal mutHTT protein & increase in INDELs at target HTT Exon50 site following intrastriatal AAV5-LEG-B administration

- Each point represents individual mice with mean ± SE shown.
- Naïve vector genome cohorts are not depicted as are below LLOQ

Codon optimization substantially improves activity

Evaluation of AAV5-TSP1-LEG-Bmco-pA1

life edit[®] an elevatebia company

Editing of rs362331 'T' SNP with LEG-B Achieved

- AAV5-LEG-B delivered intrastriatally resulted in high dose-dependent vector disposition in BACHD transgenic mice which contain a full-length human mutant HTT gene
- Dose-dependent reduction in striatal mutHTT protein
 - Clinically relevant reduction in mutHTT protein observed in striatum
- Dose-dependent increase in INDELs at target HTT Exon50 site
- Optimization of vectors using different combinations of promoters, polyA signals, and codon optimized transgenes resulted in improved editing rates and reduction of mutant HTT protein

Conclusions

- Compact size of Life Edit nucleases facilitates all-in-one delivery with a single AAV vector characterized by diverse PAM recognition sequences that enable flexible targeting of genomic loci
- Life Edit nucleases LEG-A and LEG-B enable allele specific targeting of mutHTT based on the PAM generated by HTT Exon50 SNP rs362331
- Life Edit gene editing systems packaged into AAV5 efficiently transduce CNS tissue in vivo
- AAV5-delivered Life Edit gene editing systems targeting mutHTT allele resulted in clinically relevant reduction of mutHTT protein in the striatum of YAC128 and BACHD transgenic mice which contain a full-length human mutHTT gene
- Optimization of vectors using different combinations of promoters, polyA signals, and codon optimized transgenes resulted in improved editing rates and reduction of mutHTT protein
- Further evaluation is underway to identify a development candidate

Life Edit Therapeutics Poster Presentations

#16

Poster #16: Allele selective SNP editing utilizing AAV5delivered Life Edit nuclease and guide RNA resulting in meaningful reduction of mutant HTT protein

Group A: Huntingtin Lowering

• Logan Y Brown

Group A: Huntingtin Detection/Quantification

Poster #26: Mutant and wildtype huntingtin protein quantitation utilizing automated capillary electrophoresis

Nancy Cheng

