Advanced Sequencing **Approaches for** Comprehensive AAV Vector Characterization WILL ARNOLD PHD



elevatebia\*

## Executive Summary

#### Background and Existing Methods

- Background on AAV
- Existing Analytics and Limitations

elevatebia

#### ElevateBio's Application of NGS

- Background on Sequencing
- Application of Short Read
- Application of Long Read

#### Findings and Summary

- Identifying Variants
- Characterizing Structural Isoforms
- Proposed Use Model

### AAV is The Dominant Delivery Modality for Gene Therapies

# **Abstract Analysis**



#### **Delivery Systems Being Investigated**





www.beacon-intelligence.com

Copyright Hanson Wade 2024



© 2025

### **AAV Particles Package DNA Impurities**



### All Analytic Methods Have Specific Advantages and Shortcomings



#### **Current Methods:**

- AUC: Distribution of capsids of various masses.
  - Does not assess identity of DNA.
- ddPCR: Assess molar quantities of specific components of viral genome.
  - Does not assess full genome.
- TapeStation: Characterize size and proportion of DNA after extraction.
  - Does not assess per capsid or identity of DNA.



#### elevatebia\*

### All NGS Methods Have Specific Advantages and Shortcomings



|                            | Technology             | Capital Cost    | Time to Data | Accuracy | Read Length | Output (Gbp)  |
|----------------------------|------------------------|-----------------|--------------|----------|-------------|---------------|
|                            | Illumina               | \$\$ - \$\$\$\$ | Days         | ++++     | Short       | 10's - 1000's |
| <b>elevate</b> bi <b>a</b> | Pacific<br>Biosciences | \$\$ - \$\$\$   | Days         | ++++     | Long        | 10's – 100's  |
|                            | Oxford Nanopore        | \$ \$\$\$       | Hours        | +        | Long        | 10's - 100's  |

<sup>6</sup> 

### Value of Short Read Sequencing for Sequence Identity



#### Quantification of Read Mapping



Maynard et al. 2019. Human Gene Therapy Methods.

### Value of Short Read Sequencing for Sequence Identity



### Long Read Sequencing Provides an Additional Avenue to Understand AAV





#### **Extraction Parameters Influence Vector Integrity**



**elevate**bi**@** 

# ElevateBio AAV Pipeline Enables Efficient, Reproducible, and Scalable



### **Diverse Sequences are Packaged within Capsids**



#### Frequency Distribution of Assigned Types Across AAV Samples

elevatebia\*



# Not All Long Read Sequencing is Equal

Challenge: No in-house ٠ PacBio



- <\$5K for entry level instrument
- Results: •

•

- Similar ssAAV % \_
- Slight variability in \_ contaminant profiles detected.
- Truncation hot spots are still identified.
- Continuing to optimize identification of ITR-ITR length reads.



#### **Contaminant Profile**



2500

5000

7500

10000

Start-End Position (500 bins)

12500

15000

#### elevatebia

### ElevateBio's Application Schema for NGS & AAV



 Characterize identity, truncations, and contaminant profiles.

#### Potential for all-in-one sequencing for identity, truncations, contamination profile, and % full length.

#### elevatebia\*

•

٠

### NGS Complements Existing AAV Analytical Tools

- 1. AAV is a critical delivery modality for Gene and Cell Therapy.
- 2. A comprehensive profile of the nucleic acid content of AAVs is critical to safety and efficacy.
- 3. Short read sequencing offers a rapid and affordable route to vector identity.
- 4. Long read sequencing offers novel insight to the composition of packaged DNA molecules.
- 5. Analytic and process optimization remains an evolving and critically important space.

| ddPCR     | AUC                 | TapeStation/Electrophoretic | Short Read Sequencing                      | Long Read Sequencing                                           |
|-----------|---------------------|-----------------------------|--------------------------------------------|----------------------------------------------------------------|
|           |                     |                             |                                            |                                                                |
| VG Titers | Capsid Content Mass | Nucleic Acid Sizing         | Sequence Identity<br>Sequence Contaminants | Sequence Identity<br>Sequence Contaminants<br>Sequence Species |

#### **Acknowledgements**

#### **Cellular Engineering**

Cherylene Plewa PhD



**Stacie Siedel MA** 



AAV

Lisa Santry PhD



Amira Rghei PhD



**Next Generation Sequencing** 

Adriana Geldart PhD



Freddy Mappin PhD





Gary Sommerville PhD

Will Arnold PhD\*

\*Presenting



